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Summary
Objective: Our primary goal was to measure the accuracy of fully automated ab-
sence seizure detection, using a wearable electroencephalographic (EEG) device. 
As a secondary goal, we also tested the feasibility of automated behavioral testing 
triggered by the automated detection.
Methods: We conducted a phase 3 clinical trial (NCT04615442), with a prospec-
tive, multicenter, blinded study design. The input was the one-channel EEG re-
corded with dry electrodes embedded into a wearable headband device connected 
to a smartphone. The seizure detection algorithm was developed using artificial 
intelligence (convolutional neural networks). During the study, the predefined 
algorithm, with predefined cutoff value, analyzed the EEG in real time. The gold 
standard was derived from expert evaluation of simultaneously recorded full-
array video-EEGs. In addition, we evaluated the patients' responsiveness to the 
automated alarms on the smartphone, and we compared it with the behavioral 
changes observed in the clinical video-EEGs.
Results: We recorded 102 consecutive patients (57 female, median age = 
10  years) on suspicion of absence seizures. We recorded 364 absence seizures 
in 39 patients. Device deficiency was 4.67%, with a total recording time of 309 h. 
Average sensitivity per patient was 78.83% (95% confidence interval [CI] = 
69.56%–88.11%), and median sensitivity was 92.90% (interquartile range [IQR] = 
66.7%–100%). The average false detection rate was .53/h (95% CI = .32–.74). Most 
patients (n = 66, 64.71%) did not have any false alarms. The median F1 score per 
patient was .823 (IQR = .57–1). For the total recording duration, F1 score was .74. 
We assessed the feasibility of automated behavioral testing in 36 seizures; it cor-
rectly documented nonresponsiveness in 30 absence seizures, and responsiveness 
in six electrographic seizures.
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1   |   INTRODUCTION

Therapeutic decisions in epilepsy management are cur-
rently based on information from seizure diaries, derived 
from self-reported seizures. However, this is unreliable, 
as <50% of all epileptic seizures are reported by patients.1 
Absence seizures often lack a visible clinical correlate, 
which makes their identification by caregivers increas-
ingly difficult.2 Several papers demonstrated that self-
reporting of absence seizures was unreliable; only 6%–14% 
of all electroencephalographically (EEG)-verified absences 
were reported by patients or caregivers.2–4 Moreover, in-
accurate reporting of absence seizures comprised both 
under- and overreporting; a recently published study 
found inaccurate self-reporting in more than two thirds of 
patients with absence seizures, 37.5% overreporting and 
29.2% underreporting.5

There is need for an objective estimation of absence 
seizure frequency. However, the use of gold standard in-
hospital video-EEG is resource demanding, and access to it 
is limited.1 Other strategies, such as ambulatory home EEG 
recordings, are not yet broadly available, they generate huge 
datasets for visual review, and wearing full-array EEG caps 
is stigmatizing for the patients.6 One could possibly circum-
vent this by using wearable devices and automated seizure 
detection.7–9 Previously published, retrospective, single-
center, phase 0–2 studies,10 using either full EEG array or 
downsampled to 1–2 conventional EEG channels, showed 
promising results, with sensitivity between 93.94% and 
99.1%, and false detection rates up to .9 per hour.4,11–17

Here we report the phase 310 clinical validation study of 
a fully automated, artificial-intelligence-based algorithm, 
using EEG signals from a wearable, one-channel head-
band EEG (Epihunter), for detection of absence seizures 
(NCT04615442). The study was prospective, multicenter, 
and blinded, with real-time detection, using a predefined 
algorithm and predefined cutoff values. To the best of our 
knowledge, this is the first report of a phase 3 trial of fully 
automated detection of absence seizures with a wearable 
device. The primary goal was to determine the accuracy 
of the seizure detection, measured by its sensitivity, false 
alarm rate, and F1 score. The secondary goal was testing 

the feasibility of an automated behavioral testing of pa-
tient responsiveness, triggered by the automated seizure 
detection.

2   |   MATERIALS AND METHODS

2.1  |  Participants

We recruited consecutive patients referred to video-EEG 
on suspicion of absence seizures, between April 25, 2020 
and June 28, 2021, at four centers: Danish Epilepsy Center 
(Dianalund, Denmark), Boston Children's Hospital 
(Boston, MA, USA), Leuven University Hospital (Leuven, 
Belgium), and Institute of Neurology and Neuropsychology 
(Tbilisi, Georgia). Regional ethics committees and institu-
tional review boards of the participating centers approved 
the study, and patients/caregivers gave their informed 
consent in accordance with the Declaration of Helsinki. 
The prospective study was registered at clinicaltrials.gov 
(NCT04615442).

Significance: Automated detection of absence seizures with a wearable device 
will improve seizure quantification and will promote assessment of patients in 
their home environment. Linking automated seizure detection to automated be-
havioral testing will provide valuable information from wearable devices.

K E Y W O R D S

absence seizure, artificial intelligence, automated detection, behavioral testing, epilepsy, 
wearable devices

Key Points
•	 We conducted a phase 3 validation study of au-

tomated detection of absence seizures, using a 
wearable EEG device

•	 The gold standard was expert evaluation of 
simultaneously recorded video-EEGs, which 
identified 364 absence seizures

•	 The median sensitivity per patient was 92.0%, 
with a median F1 score per patient of .82 and 
device deficiency of 4.67%

•	 We did a feasibility assessment of automated 
behavioral testing triggered by automated sei-
zure detection in 36 absence seizures

•	 The automated behavioral testing correctly 
documented nonresponsiveness versus respon-
siveness of the patients, as compared with the 
video-EEG
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Inclusion criteria were as follows: patients aged 3 
years or older, suspected of having absence seizures, re-
ferred to video-EEG monitoring, as part of their clinical 
assessment. Exclusion criteria were head circumference 
outsize the range of the wearable device (40–60  cm), 
inability to comply with the instructions, and behav-
iors that included removing the device before or during 
recording.

2.2  |  EEG recordings

The wearable EEG was recorded using the Brainlink 
Lite device (Macrotellect), a consumer EEG headband  
(Figure 1), approved for use in the European Union (CE 
mark), which can be mounted by untrained personnel, and 
hence is also suitable for home recording. The headband 
uses a NeuroSky ThinkGear ASIC Module (NeuroSky). 
This chip connects to three dry EEG electrodes (active, 
reference, and ground), placed on the forehead by an 
elastic band (Figure 1), resulting in a bipolar EEG chan-
nel corresponding to F7-Fp1.11 The device is connected 
via Bluetooth to a smartphone unit for further data pro-
cessing. The 3.7-V 160-mAh lithium battery in the device 
enables 4–5 h of continuous EEG streaming. To monitor 
the quality of the recorded EEG signals, the device uses an 
algorithm that combines an assessment of the electrode 
contact to the skin (impedance) and the noise level from 
environmental or biological factors (electromyogram, 

electrocardiogram, electro-oculogram). Signal quality is 
measured once per second on a scale from 0 (very good) to 
200 (very bad). If the average signal quality over the last 5 
s is >40, then it is considered deficient.

Simultaneously with the wearable EEG, clinical 
video-EEG was recorded using NicoletOne EEG system 
(Natus Neuro) in Denmark, Micromed BRAIN QUICK 
in Georgia, and Brainlab EEG system (OSG) in Belgium. 
The clinical EEG was recorded using the standardized 
electrode array of the International Federation of Clinical 
Neurophysiology,18 and the recordings were done at the 
participating centers (in-hospital).

2.3  |  The algorithm

For the fully automated detection of absence seizures, we 
used a predefined (previously developed) algorithm, with 
predefined cutoff values. The algorithm analyzed the EEG 
seizures in real time and logged the time points of the 
detected seizures. In the blinded clinical trial, the alarm 
function was disabled.

The algorithm was previously developed using arti-
ficial intelligence (deep learning). We used TensorFlow 
(https://www.tenso​rflow.org/), an open source software 
library for high-performance numerical computation 
(Figure 2). Its flexible architecture allows easy deploy-
ment of computation across a variety of platforms, and 
from desktops to clusters of servers to mobile and edge de-
vices. Deep learning is a promising approach from artifi-
cial intelligence. It has been applied before to EEG seizure 
detection with promising results.19–21 The neural network 
consists of four convolutional layers, followed by two 
dense layers and a final logits layer (Figure 2). We used 
a combination of batch normalization and dropout layers 
to avoid overfitting. The algorithm analyzed the EEG sig-
nals in windows of 2 s, with 1-s overlap. Automatically 
detected absence seizures were defined as three consec-
utive seizure windows. The training of the algorithm was 
previously performed on 141 h of clinical EEG data from 
people with absence epilepsy, including 271 absence sei-
zures. For the training, only the frontal Fp1-F7 leads were 
retained, as they are the closest to the wearable electrode 
locations. None of the patients from the training phase 
was recruited to this validation study.

2.4  |  Primary outcome measures

In the validation study, absence seizures were defined 
electrographically as bilateral–synchronous spike–wave 
discharges, at a frequency of 2.5–3.5  Hz, and duration 
of at least 5 s.22,23 The gold standard for the seizure time 

F I G U R E  1   The wearable electroencephalographic (EEG) 
device used in this study. The dry EEG electrodes in the elastic 
headband are placed close to the standard EEG locations F7 and 
Fp1 (bipolar channel). The third electrode is the ground (at Fpz 
location). The device is connected to a smartphone via Bluetooth

https://www.tensorflow.org/
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points was based on the assessment of the clinical video-
EEG recordings, by trained experts. At each center, two 
experts, blinded to the automated detections, evaluated 
each EEG. Discordant assessments were resolved by con-
sensus discussions.

We compared the time points of automated seizure de-
tection with the seizure time points from the gold standard. 
When these overlapped, the detection was considered true 
positive (TP). Seizures listed in the gold standard, which 
were not detected by the algorithm, were considered false 
negatives (FNs). We considered false positives (FPs) the 
automated detections without corresponding spike–waves 
identified in the gold standard, or corresponding to spike–
waves shorter than 4 s, without clinical correlate.

We measured and reported device deficiency periods, 
when the device was not recording or the signal quality 
monitored by the device was poor. Seizures occurring 
during device deficiency periods were not listed in the 
gold standard.

We calculated the percentage of device deficiency pe-
riods for the entire recording duration, sensitivity, false 
detection rate, and F1  score. Sensitivity (the proportion 
of detected seizures) was calculated as TP / (TP  +  FN). 
F1  score (the harmonic mean of precision and sensitiv-
ity) is a measure of the detection accuracy, with values be-
tween 0 (poor) and 1 (excellent). F1 score was calculated 
as 2 × (precision × sensitivity) / (precision + sensitivity), 
where precision was calculated as TP / (TP + FP).

2.5  |  Automated behavioral testing

We assessed the feasibility of automated testing of pa-
tients' responsiveness, triggered by automated seizure 
detection. For this part of the study, the seizure alarm 

F I G U R E  2   Deep learning algorithm running in TensorFlow. 
EEG, electroencephalogram

F I G U R E  3   Absence seizure 
recorded with the full-array clinical 
electroencephalogram (EEG; top) and 
the one-channel, wearable EEG (bottom 
trace)
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function was turned on (vibration of the smartphone 
and acoustic alarm). Patients were instructed to use the 
smartphone and turn the alarm off as soon as they hear 
the seizure alarm. When patients turned off the alarm 
during a detected absence seizure, they were considered 
responsive. When patients failed to turn off the alarm dur-
ing a detected absence seizure, they were considered non-
responsive. The behavioral response to the smartphone 
alarm, triggered by the automated seizure detection, was 
compared with the evaluation of the clinical video-EEG 
recordings.

We conducted the study according to the ISO 14155 
requirements, and we report the study according to the 
STARD guideline.24

3   |   RESULTS

We recruited 102 consecutive patients (57 female). The 
median age was 10  years (range = 4–28  years). Patients 
were diagnosed with childhood absence epilepsy (n = 33), 
juvenile absence epilepsy (n  =  24), idiopathic general-
ized epilepsy–not classified further (n = 14), epilepsy with 
myoclonic absences (n = 2), and genetic generalized epi-
lepsy (n = 1). Twenty-eight patients were referred to the 
video-EEG on suspicion of absence seizures, but the re-
cording did not show abnormal findings (neither ictal nor 
interictal). Thirty-nine patients had 364 absence seizures 
in total. Figure 3 shows an absence seizure recorded with 
the full array clinical EEG and the one-channel wearable 
EEG device.

Device deficiency was 4.67% of the total recording 
time, yielding 309.4 h of recording with good signal qual-
ity. The fully automated seizure detection had an average 
sensitivity per patient of 78.83% (95% confidence interval 
[CI] = 69.56%–88.11%), median sensitivity per patient of 
92.90% (interquartile range [IQR] = 66.7%–100%), and 
overall sensitivity across all seizures of 79.12% (95% CI 
= 74.58%–83.18%). The average false detection rate in 
all 102 patients was .53/h (95% CI = .32%–.74%). For the 
total recording duration (309.4 h), the false detection rate 
was  .59/h. Almost two thirds of the patients (64.7%) did 
not have any false detection at all. The median F1 score 
per patient was .823 (IQR = .57–1). For the total recording 
duration, the F1 score was .74. Supplementary Document 
1 shows the STARD flowchart of the study.

The feasibility of the automated behavioral testing trig-
gered by the automated seizure detection was tested in 
36  seizures from six patients. Supplementary Document 
2 shows video-EEG examples with automated behavioral 
testing during electrographic absence seizures. In 30 sei-
zures, the automated behavioral testing documented 
nonresponsiveness and in six seizures, it documented 

responsiveness, verified by the clinical video-EEG record-
ing (Supplementary Document 2).

4   |   DISCUSSION

In this phase 3, large, prospective, multicenter, blinded 
clinical validation study, using a predefined algorithm and 
cutoff values, we achieved an average sensitivity of 78.8%, 
median sensitivity of 92.9%, and median F1  score of .82 
per patient, for real-time, automated detection of absence 
seizures, with a wearable device incorporating dry EEG 
electrodes. The vast majority of the patients (almost two 
thirds) did not have any false alarms. To the best of our 
knowledge, this is the first phase 3 trial to demonstrate the 
accuracy of a wearable device for automated detection of 
absence seizures.

Previously published phase 0–2  studies reported 
somewhat better results, with sensitivity of automated 
absence seizure detection between 94% and 99%, and 
false detection rates between zero and .9 per hour.4,11–17 
Results of retrospective analyzes always appear to be 
better than the prospective ones. When algorithms are 
trained on the recorded dataset and then evaluated using 
cross-validation, overfitting may occur, especially when 
the sample size is small. Furthermore, optimizing the 
cutoff value to the already recorded dataset gives an 
overly optimistic view of the performance of the algo-
rithm. The performance of our fully automated detection 
is comparable to the recently published semiautomated 
detection of absence seizures, where experts evaluated 
the automated detections, achieving a median sensitivity 
of 83% and an F1 score of  .87.4

Absence seizures are relatively common; they affect .7–
4.6 in 100 000 individuals across the general population,25 
and they bear a significant burden on the patient's quality 
of life due to constraints in everyday life.26  Therapeutic 
decisions are currently based on seizure self-reporting, 
which is unreliable, as both overreporting and underre-
porting have been documented, and this may change in 
time within the same patient, making any estimation 
extremely difficult. Therefore, an objective estimation of 
seizure burden, using a fixed algorithm and fixed cutoff 
value, has high potential clinical relevance, even when not 
perfectly accurate, as it is stable in time, making possible 
an objective assessment of within-patient change of the 
seizure burden.

The benefit of long-term EEG monitoring to assess the 
therapeutic response in patients with absence seizures has 
been well documented.27,28 However, visual evaluation 
of long-term EEG monitoring using full-array EEG and 
clinical equipment is time-consuming, obtrusive, usu-
ally limited to 24 h, and often performed in the hospital. 
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Using automated seizure detection and a wearable EEG 
device with dry electrodes, which can be mounted by par-
ents/caregivers in the home environment of the patient, 
potentially can circumvent these difficulties, providing 
better patient care. The huge impact on the global health 
care system of the recent pandemic clearly demonstrated 
the importance of extending patient management to the 
home environment. Teleconsultations of patients with ab-
sence seizures would benefit from data on seizure burden 
derived from automated EEG analyses using wearable de-
vices in the home environment of the patients. This is the 
main use case we envisage for our device.

Previously published automated seizure detection 
systems using wearables (not only for absence but also 
for other seizure types) monitor changes in biosig-
nals, but do not involve automated behavioral testing.8 
Although these automated detections can accurately 
identify seizure activity, they are uninformative about 
important seizure characteristics, such as impairment 
of consciousness. Many experts expressed concerns that 
increased use of wearable detection devices will flood 
the clinicians with detections of uncertain clinical sig-
nificance. Linking automated seizure detection to au-
tomated behavioral testing can potentially alleviate this 
problem. Automated behavioral testing triggered by au-
tomated seizure detection, based on full EEG array in an 
epilepsy monitoring unit, has been previously reported 
in two patients.29 Here, we demonstrated the feasibility 
of this approach using wearable devices. To the best of 
our knowledge, ours is the first study incorporating au-
tomated behavioral testing into a wearable seizure de-
tection device. The potential of this approach for other 
seizure types is considerable.

In conclusion, this phase 3 clinical trial demonstrated 
that absence seizures could be detected with a fully au-
tomated algorithm, embedded into a wearable device. 
Linking automated behavioral testing to automated sei-
zure detection may provide useful information for char-
acterizing seizures. Use of home EEG recordings using 
wearables and automated signal analysis may provide use-
ful information for management of patients with absence 
seizures by telemedicine.
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